Lecture 2

Afshin Goodarzi*

Royal Institute of Technology, Department of Mathematics, S-100 44, Stockholm, Sweden.

1 Introduction

In differential topology, Morse theory provides techniques to understand the topology of a smooth manifold \mathcal{M} by studying differentiable functions on \mathcal{M} . Forman [For98] invented a discrete analogue of Morse theory for cell complexes which we are going to introduce in this lecture. We start by a very simple example from Morse theory to, at least, justify the notations in the discrete version. One may consult the lectures [Mil63] by Milnor, where this example is taken from, for precise definitions and information on Morse theory.

Height Function on Torus. Let \mathcal{T} be a 2-dimensional torus tangent to the xy-plane in point m. Let s_1 and s_2 be the saddle points (critical points of index 1) and M the maximum point (critical point of index 2) of \mathcal{T} . See Figure 1. Let $f: \mathcal{T} \to \mathbb{R}$ be the height function, that is to say for $p = (x, y, z) \in \mathcal{T}$ one has f(p) = z. For $a \in \mathbb{R}$, let $\mathcal{T}(a)$ be the set of all points p in \mathcal{T} with $f(p) \leq a$.

Figure 1: A torus \mathcal{T} tangent to the xy-plane

In particular, $\mathcal{T}(a)$ is empty for a < 0 and $\mathcal{T}(0)$ is just one point m. We would like to see how the homotopy type of $\mathcal{T}(a)$ is changing as a increases.

- (1) If $a \in (0, f(s_1))$, then $\mathcal{T}(a)$ is a 2-disk and, in particular, homotopy equivalent to a point.
- (2) If $a \in (f(s_1), f(s_2))$, then $\mathcal{T}(a)$ is a cylinder and, in particular, homotopy equivalent to a 1-cell attached along its boundary (two points) to a point.
- (3) If $a \in (f(s_2), f(M))$, then $\mathcal{T}(a)$ is a torus minus a disk and, in particular, homotopy equivalent to two 1-cells attached along their boundaries to a point.
- (4) If $f(M) \leq a$, then $\mathcal{T}(a) = \mathcal{T}$.

^{*}af.goodarzi@gmail.com

To summarize, we can write:

- If f does not have any critical value in (a, b], then $\mathcal{T}(a) \simeq \mathcal{T}(b)$.
- If f has exactly one critical value in (a, b], then $\mathcal{T}(b)$ is obtained from $\mathcal{T}(a)$ by attaching a cell along its boundary. Moreover, the index of the critical value and the dimension of the new cell are the same.

2 Poset Topology

Abstract Simplicial Complexes. Let V be a finite set. An abstract simplicial complex Δ on vertex set V is a non-empty collection of subsets of V that is closed under taking subsets. The elements of Δ are called faces. The dimension of a face is its cardinality minus one and dimension of Δ is the maximum dimension of its faces.

Vertex Scheme and Geometric Realization. Let \mathcal{K} be a geometric simplicial complex and $V(\mathcal{K})$ be its vertex set. The *vertex scheme* of \mathcal{K} an abstract simplicial complex Δ together with a bijection $f:V(\Delta)\to V(\mathcal{K})$ in such a way that a subset U of $V(\Delta)$ is in Δ if and only if $\mathrm{conv}(f(U))\in\mathcal{K}$. If Δ is a vertex scheme of \mathcal{K} , we say \mathcal{K} is a geometric realization of Δ .

Lemma 1. If K_1 and K_2 are two geometric realization of an abstract simplicial complex Δ , then $K_1 \cong K_2$.

Theorem 2. Every d-dimensional abstract simplicial complex has a geometric realization in \mathbb{R}^{2d+1} .

Proof.

Order Complexes. Let P be a partially ordered set (poset). The order complex $\Delta(P)$ is defined to be a simplicial complex whose vertices are elements of P and whose faces are the chains $x_0 < x_1 < \ldots < x_t$ of elements in P.

Face Poset. Let (\mathcal{X}, Σ) be a regular cell complex and \mathcal{K} be the set of closed cells (or faces) of (\mathcal{X}, Σ) . By abuse of language we call \mathcal{K} a regular cell complex. The *face poset* $\mathcal{F}(\mathcal{K})$ is the poset of faces of \mathcal{K} ordered by inclusion. We include the empty set as a face and denote it by $\hat{0}$ in $\mathcal{F}(\mathcal{K})$.

Theorem 3. A poset P is the face poset of a regular cell complex if and only if $\Delta(\hat{0}, x)$ is homeomorphic to a sphere for all $x \in P$.

Proof.

Corollary 4. Let K be a regular cell complex. Let σ be a (d-1)-face and τ a (d+1)-face such that $\sigma < \tau$. Then there are exactly two d-faces λ_1 and λ_2 such that $\sigma < \lambda_i < \tau$.

3 Discrete Morse Theory

Let (\mathcal{X}, Σ) be a regular cell complex and \mathcal{K} be the set of closed cells (or faces) of (\mathcal{X}, Σ) . Let $f : \mathcal{K} \to \mathbb{R}$ be a real-valued function on faces of \mathcal{K} . Let τ be a (d+1)-face and σ be a d-face such that $\sigma < \tau$. We say that f has a descent from σ to τ if $f(\tau) \leq f(\sigma)$. The set of all descent of f from σ will be denoted by $U_f(\sigma)$ and $L_f(\sigma)$ will denote the set of all descent of f to σ . Clearly, $\sigma \in U_f(\tau)$ if and only if $\tau \in L_f(\sigma)$. We also let $u_f(\sigma)$ (resp. $\ell_f(\sigma)$) denote the cardinality of $U_f(\sigma)$ (resp. $L_f(\sigma)$).

Definition 5 (Discrete Morse Function). A discrete Morse function is a 1-1 real-valued function $f: \mathcal{K} \to \mathbb{R}$ such that for all $\sigma \in \mathcal{K}$ one has

$$u_f(\sigma) \le 1$$
 and $\ell_f(\sigma) \le 1$.

A d-face σ is said to be a d-critical face (with respect to f) if $u_f(\sigma) = \ell_f(\sigma) = 0$. A d-critical value of f is the image $f(\sigma)$ of a d-critical face σ . The set of all d-critical faces (w.r.t. f) is denoted by $M_d(f)$ and its cardinality by $m_d(f)$. For $a \in \mathbb{R}$, the a-level subcomplex of K is the set of all faces σ such that there exists $\tau \in K$ with $\sigma < \tau$ and $f(\tau) \leq a$.

Lemma 6. If f is a discrete Morse function on K, then $u_f(\sigma) + \ell_f(\sigma) \leq 1$ for all $\sigma \in K$.

Proof. Assume not. Then there exist $\tau < \sigma < \lambda$ of consecutive dimensions such that $f(\tau) > f(\sigma) > f(\lambda)$. Now if σ' is the unique other face of \mathcal{K} with $\tau < \sigma' < \lambda$, then $f(\sigma') > f(\tau)$ and $f(\sigma') < f(\lambda)$ (since $u_f(\tau) \le 1$ and $\ell_f(\lambda) \le 1$) which is a contradiction.

Lemma 7. If f is a discrete Morse function on K, then there exists a critical vertex.

Proof. $f^{-1}(\min\{f(\sigma)|\sigma\in\mathcal{K}\})$ must be a vertex and is critical.

Theorem 8. Let K be a regular cell complex and f be a discrete Morse function on K.

- (1) If f does not have any critical value in (a,b], then $K(a) \nearrow K(b)$.
- (2) If f has exactly one d-critical value in (a,b], then K(b) is obtained from K(a) by attaching a d-cell along its boundary.

Proof. \Box

Corollary 9. Let K be a regular cell complex and f be a discrete Morse function on K. Then K is homotopy equivalent to a CW-complex with exactly $m_d(f)$ d-cells for each d.

Proposition 10. K is collapsible if and only if there exists a discrete Morse function on K with exactly one critical face.

References

[For98] Robin Forman, Morse theory for cell complexes, Adv. Math. 134 (1998), no. 1, 90–145.

[Mil63] John Milnor, Morse theory, Princeton University Press, Princeton, N.J., 1963.