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1 Introduction

In differential topology, Morse theory provides techniques to understand the topology of a smooth
manifoldM by studying differentiable functions onM. Forman [For98] invented a discrete analogue
of Morse theory for cell complexes which we are going to introduce in this lecture. We start by a very
simple example from Morse theory to, at least, justify the notations in the discrete version. One may
consult the lectures [Mil63] by Milnor, where this example is taken from, for precise definitions and
information on Morse theory.

Height Function on Torus. Let T be a 2-dimensional torus tangent to the xy-plane in point m.
Let s1 and s2 be the saddle points (critical points of index 1) and M the maximum point (critical
point of index 2) of T . See Figure 1. Let f : T → R be the height function, that is to say for
p = (x, y, z) ∈ T one has f(p) = z. For a ∈ R, let T (a) be the set of all points p in T with f(p) ≤ a.
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Figure 1: A torus T tangent to the xy-plane

In particular, T (a) is empty for a < 0 and T (0) is just one point m. We would like to see how the
homotopy type of T (a) is changing as a increases.

(1) If a ∈ (0, f(s1)), then T (a) is a 2-disk and, in particular, homotopy equivalent to a point.

(2) If a ∈ (f(s1), f(s2)), then T (a) is a cylinder and, in particular, homotopy equivalent to a 1-cell
attached along its boundary (two points) to a point.

(3) If a ∈ (f(s2), f(M)), then T (a) is a torus minus a disk and, in particular, homotopy equivalent
to two 1-cells attached along their boundaries to a point.

(4) If f(M) ≤ a, then T (a) = T .
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To summarize, we can write:

• If f does not have any critical value in (a, b], then T (a) ' T (b).

• If f has exactly one critical value in (a, b], then T (b) is obtained from T (a) by attaching a cell
along its boundary. Moreover, the index of the critical value and the dimension of the new cell
are the same.

2 Poset Topology

Abstract Simplicial Complexes. Let V be a finite set. An abstract simplicial complex ∆ on vertex
set V is a non-empty collection of subsets of V that is closed under taking subsets. The elements of
∆ are called faces. The dimension of a face is its cardinality minus one and dimension of ∆ is the
maximum dimension of its faces.

Vertex Scheme and Geometric Realization. Let K be a geometric simplicial complex and V (K)
be its vertex set. The vertex scheme of K an abstract simplicial complex ∆ together with a bijection
f : V (∆)→ V (K) in such a way that a subset U of V (∆) is in ∆ if and only if conv(f(U)) ∈ K. If ∆
is a vertex scheme of K, we say K is a geometric realization of ∆.

Lemma 1. If K1 and K2 are two geometric realization of an abstract simplicial complex ∆, then
K1 ∼= K2.

Theorem 2. Every d-dimensional abstract simplicial complex has a geometric realization in R2d+1.

Proof.

Order Complexes. Let P be a partially ordered set (poset). The order complex ∆(P ) is defined
to be a simplicial complex whose vertices are elements of P and whose faces are the chains x0 < x1 <
. . . < xt of elements in P .

Face Poset. Let (X ,Σ) be a regular cell complex and K be the set of closed cells (or faces) of (X ,Σ).
By abuse of language we call K a regular cell complex. The face poset F(K) is the poset of faces of K
ordered by inclusion. We include the empty set as a face and denote it by 0̂ in F(K).

Theorem 3. A poset P is the face poset of a regular cell complex if and only if ∆(0̂, x) is homeomorphic
to a sphere for all x ∈ P .

Proof.

Corollary 4. Let K be a regular cell complex. Let σ be a (d − 1)-face and τ a (d + 1)-face such that
σ < τ . Then there are exactly two d-faces λ1 and λ2 such that σ < λi < τ .

3 Discrete Morse Theory

Let (X ,Σ) be a regular cell complex and K be the set of closed cells (or faces) of (X ,Σ). Let f : K → R
be a real-valued function on faces of K. Let τ be a (d + 1)-face and σ be a d-face such that σ < τ .
We say that f has a descent from σ to τ if f(τ) ≤ f(σ). The set of all descent of f from σ will be
denoted by Uf (σ) and Lf (σ) will denote the set of all descent of f to σ. Clearly, σ ∈ Uf (τ) if and
only if τ ∈ Lf (σ). We also let uf (σ) (resp. `f (σ)) denote the cardinality of Uf (σ) (resp. Lf (σ)).

Definition 5 (Discrete Morse Function). A discrete Morse function is a 1-1 real-valued function f :
K → R such that for all σ ∈ K one has

uf (σ) ≤ 1 and `f (σ) ≤ 1.
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A d-face σ is said to be a d-critical face (with respect to f) if uf (σ) = `f (σ) = 0. A d-critical value of
f is the image f(σ) of a d-critical face σ. The set of all d-critical faces (w.r.t. f) is denoted by Md(f)
and its cardinality by md(f). For a ∈ R, the a-level subcomplex of K is the set of all faces σ such that
there exists τ ∈ K with σ < τ and f(τ) ≤ a.

Lemma 6. If f is a discrete Morse function on K, then uf (σ) + `f (σ) ≤ 1 for all σ ∈ K.

Proof. Assume not. Then there exist τ < σ < λ of consecutive dimensions such that f(τ) > f(σ) >
f(λ). Now if σ′ is the unique other face of K with τ < σ′ < λ, then f(σ′) > f(τ) and f(σ′) < f(λ)
(since uf (τ) ≤ 1 and `f (λ) ≤ 1) which is a contradiction.

Lemma 7. If f is a discrete Morse function on K, then there exists a critical vertex.

Proof. f−1(min{f(σ)|σ ∈ K}) must be a vertex and is critical.

Theorem 8. Let K be a regular cell complex and f be a discrete Morse function on K.

(1) If f does not have any critical value in (a, b], then K(a)↗ K(b).

(2) If f has exactly one d-critical value in (a, b], then K(b) is obtained from K(a) by attaching a
d-cell along its boundary.

Proof.

Corollary 9. Let K be a regular cell complex and f be a discrete Morse function on K. Then K is
homotopy equivalent to a CW-complex with exactly md(f) d-cells for each d.

Proposition 10. K is collapsible if and only if there exists a discrete Morse function on K with exactly
one critical face.
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